

MICROSYSTEMS

Fluorescence Lifetime Imaging (FLIM)

Haridas Pudavar, PhD., Application &Technology Support group, Leica Microsystems Inc. Exton, PA

What is FLIM?

Fluorescence Lifetime Imaging Microscopy – FLIM

- Fluorescence based method
- Analysis of the lifetime of the excited state of fluorescent molecules
- Combination of this analysis with imaging
 - ⇒ Spatially resolved distribution of fluorescent lifetimes
 - ⇒ Additional information

Conventional confocal intensity image

Fluorescence lifetime image /ps

Sample: Prionium, stained with Safranin and Fast green

Excitation-emission cycle and Fluorescence fica Lifetime

the emission of a photon.

- Sample excited with intensity modulated light
- Intensity of light is varied at high frequency.
- Emission delayed relative to the excitation

 measured in phase shift (φ).

Commonly used with wide-field imaging techniques

Fluorescence Lifetime: TCSPC Measurements

• excitation with a pulsed laser

- measuring the time between laser pulse and fluorescence photon
- calculation of a histogram of numbers of photons over time after laser pulse (lifetime decay curve)
- + good time resolution!
- + high sensitivity!

Lifetime measurement: TCSPC Time Correlated Single Photon Counting

Data analysis

- Fit of an exponenetial curve to the histogram
- fit parameter of the curve: amplitude (number of photons at t=0) and time constant τ (fluorescence lifetime)
- τ fluorescence lifetime:
- time at which amplitude a₀ of the fit curve decays to a₀/e (e≅2.3)
- average time between excitation and emission
- characteristic property of dyes, usually in ns range
- depends on environment (ions, pH, $O_2 \dots$)

MICROSYSTEMS

FLIM: Lifetimes are measured at <u>each pixel</u> and displayed as color <u>contrast</u>.

It combines information about spatial distribution of a fluorescent molecule together with information about its microenvironment (pH, etc).

In this way an extra dimension of information is obtained.

Imaging modes: wide-field, confocal, multiphoton

Fluorescence lifetime image

Wavelength -color lock-up table

Steps in Fluorescence lifetime imaging (FLIM)

Intensity image

1) Data aquisition: measurement of lifetime decay curves with spatial resolution

- Multiexponential Decay Position: + 220 x + 289 y tm = 630.08 Binning: + 2 (2n+1 * 2n+1) Threshold: + Components: 2 ÷ 100000 $\chi_{\rm f}^2 = 13.99$ a1[%] 91.3 10000t1[ps] 472.2 🕂 🗌 Fix 1000a2[%] 8.7 t2[ps] 2285. 🕂 🗆 Fix 100a3[%] [÷ t3[ps] 🚺 🕂 🗆 Fix Shift 1.0 🕂 🔽 Fix Scatter 0 ÷ 🛛 🕬 16.0 18.0 24.0 12.0 i 14.0 22.0 🗄 🗆 Fix Offset 4.5
- 2) exponential fit of decay curves in each pixel, calculate fluorescence lifetime in each pixel

3) transformation of fluorescence lifetimes in color code

Sample: Prionium, stained with Fast green, Safranin orange, and autofluorescence

Lifetime image

Lifetime distribution/ ps

2000

1000

Resolution of FLIM image acquired in TCSPC Mode using PMTs (Leica SP2 D FLIM) equals conventional confocal intensity imaging.

Resolution using image intensifiers+CCD camera is much lower (not shown here).

Lifetime image

Lifetime distribution /ps

800

Sample: Cat retina, Azan-staining

Intensity image

Types of fluorescent markers

- auto fluorescence: NADH, Flavins, chlorophyll
- fluorescent proteins (CFP, GFP, YFP, ..)
- Fluorescent markers bound to antibodies (FITC, ..)
- Ion indicators e.g. Calcium, Sodium, pH (Fluo-3, Na-green, Oregon Green, DM-NERF, CI-NERF ..)

Lifetime distribution/ ps

Lifetime image of guard cell:

Expression of yellow chameleon (ECFP, Calmodulin, M13 and EYFP) and autofluorescence (chloroplasts in blue) Excitation @ 405 nm

Courtesy:

Xiaodong Xie, Dept. of Biol. Sciences, Lancaster University

Leica FLIM: Main components

FLIM Components

- Pulsed Laser
- Detector working in single photon counting mode with high time resolution, good quantum efficiency and low noise
- In Computer: High performance counting card for data collection and processing

Leica setup

pulsed IR laser (MP FLIM) and/or pulsed PQ laser diode 405 nm (D FLIM)

≻Up to 2 spectral (internal) FLIM detectors from Hamamatsu

> SP C 830 from B&H in separate PC

Leica MP FLIM – Available lasers for MP excitation:

- Coherent: Chameleon (repetition rate 90 MHz=pulse distance of 11.1 ns), Mira
- Spectra Physics: Mai Tai (repetition rate 80 MHz=pulse distance of 12.5 ns), Tsunami

Leica FLIM 2 using Spectral FLIM detector, SPC-830 countercard and software

•Internal FLIM detector : Hand selected Hamamatsu R7400-U01 PMTs

•Counterbord SPC 830:

- compact PCI board with <10 ps resolution including software for online data acquisition, processing, and evaluation
- SPC 730: 8 MB histogram memory
 (@ 256 x 256 pixels: 64 time channels for each pixel)
- SPC 830: 32 MB histogram memory
 (@ 512 x 512 pixels: 64 time channels for each pixel)
- count rates up to 4 MHz

Leica FLIM: lasers

• MP FLIM – multiphoton excitation using tunable IR lasers

- Coherent: Chameleon (repetition rate 90 MHz=pulse distance of 11.1 ns), Mira
- Spectra Physics: Mai Tai (repetition rate 80 MHz=pulse distance of 12.5 ns), Tsunami

• D FLIM – pulsed diode excitation:

- pulsed 405 nm laser diode from PicoQuant
- pulse length: < 70 ps @ 1 mW average power
- maximum average power: > 3 mW
- peak power: a few 100 mW
- repetition rate: 40, 20, 10, 5, 2.5 MHz = pulse distance: 25, 50, 100, 200, 400 ns

Leica FLIM: comparison of advantages of MP and D FLIM

- tunable excitation wavelength => variety of dyes observable
- deep tissue penetration
- no out of focus bleaching
- laser can be used for regular MP intensity imaging
- D FLIM pulsed diode excitation:
 - Different repetition rates available (2.5 to 40 MHz) => also longer lifetimes can be observed without "pile-up" effect => adaptation to different dyes
 - no 3 photon excitation => no excitation of DNA, NADH, ... => less photo damage in living cells (important in long term experiments)
 - dyes can be observed that are not excitable with MP (like cy-dyes)
 - laser more affordable, can be used for regular intensity imaging and photoactivation, ROI and beampark funcktion available

Both, MP and D-FLIM can be attached to one system!

MICROSYSTEMS

pulsed IR laser (MP FLIM) and/or pulse trigger pulsed PQ laser diode 405 nm (D FLIM) from laser: "Sync"-Signal Internal Spectral FLIM detectors Detector signal shutter Leica TCS SP5 trigger unit

B&H FLIM hardware and software on a separate PC

from SP5 scanhead to SPC830: trigger output (frame, line & pixel clock)

Spectral (internal) FLIM with one or two channels feica

Fast Detectors for Spectral FLIM: Lifetime-Wavelength Recording

Leica FLIM: Advantages of spectral (internal) FLIM

- Freedom and flexibility in choice of spectral range for FLIM (filter-free FLIM). Optimal adjustment to experimental conditions, removal of autofluorescence by selection of spectral detection range.
- Allows to measure lifetime over wavelength and thus to separate populations with same lifetime by spectrum or with same spectrum by lifetime.
- Increase in sensitivity in FRET analysis by simultaneous observation of donor and acceptor. Increase in sensitivity in FRET analysis by simultaneous observation of donor and acceptor.
- The FLIM detectors can be used for regular intensity imaging as well => cost efficiency. Quantum efficiency of internal FLIM detectors is slightly lower compared to "normal" detectors.

- On separate PC, independent from Leica TCS SP2
- 2 program packages:
 - 1) SPCM: Image acquisition, Set parameters of SPC 730/830
 - 2) SPCImage: Data analysis
 - Fluorescence decay curve for each single pixel
 - Single or multiple exponential fit to each point
 - Intensity and lifetime image

MICROSYSTEMS

Measurement time

Leica

MICROSYSTEMS

Leica FLIM: Becker & Hickl SPC-830 acquistion package: SPCM

What means SYNC, CFD, TAC, and ADC in the B&H software SPCM?

MICROSYSTEMS

What means SYNC, CFD, TAC, and ADC in the B&H software SPCM?

	Full Name	Function	Meaning of bar display
SYNC	Synchronization signal	Signal from the laser when a laser pulse is generated	Shows average pulse rate during scanning, due to blanking number is smaller than real laser repetition rate
CFD	Constant Fraction Discriminator	Discriminates electronic background noise from signal of photons and removes the noise, removes temporal jitter of detector pulses	Shows number of all events recognized by the cards as being photons
TAC	Time to Amplitude Converter	Measures the time between photon and laser pulse and converts it into a voltage amplitude	Shows number of all photons that can be related to a laser pulse
ADC	Analogue to Digital Converter	Converts the analogues voltage signal into a digital signal (needed to build up the histogram)	Shows number of all photons that can be also addressed to an xy position in the image

leica

MICROSYSTEMS

CFD Limit L

discriminates

What do CFD, TAC, and ADC do? CFD Signal from Detector CFD Limit L Time TAC Blue – laser pulse, Green – photon

FLIM applications

- Dye separation
- Energy transfer (FRET) for distance measuremens
- Concentration measurements of ions (Ca²⁺, Na⁺, pH, ...), small ligands, oxygen
- Environmental studies (viscosity, refractive index, membran potential)
- Protein studies (Proteomics)
- Intracellular signal transduction

Measurement of autofluorescence -Lifetime of chlorophyll

Conventional confocal image showing chlorophyll fluorescence

lambda-scan showing Chlorophyll emission spectrum Sample: Living Diatomee excitation @ 405 nm

Intensity image Haridas Pudavar, PhD, 07/16/08

Fluorescence lifetime image

Lifetime distribution/ ps Haridas Pudavar, PhD, Application and Technology Support, Leica Microsystems Inc. 10/25/09

Measurement of autofluorescence – Differentiate different cell types by lifetime

Lifetime distribution/ ps

Intensity image

Lifetime image

Sample: Mouse tissue sections, unstained, excitation @ 405 nm

Lifetime as additional contrast: Distinguish 4 yellow dyes by their life time

Fluorescence lifetime image

Sample: 4 different yellow, fluorescent dyes (see table) dissolved in methanol or buffer, in multi-well plate

Excitation @ 405 nm

Lifetime distribution/ ps

well	dye	buffer	lifetime
1	DASPI	Methanol	0.217 ns
2	Stilben	Methanol	0.282 ns
3	Coumarin	Methanol	4.65 ns
4	Fluorescein	NaOH buffer	3.85 ns

Lifetime as additional contrast: Distinguish 2 green dyes by their life time

Fluorescence emission spectrum (acquired with Leica SP2 AOBS)

Fluorescence Lifetime Image

Environmental studies: Effect of local surrounding of the dye on its lifetime

Fluorescence lifetime image

Sample:

DASPI dissolved in methanol/glycerol mixture, glycerol concentration: A>B>C>D, in multi-wellplate Excitation @ 405 nm

Result: The higher the viscosity the longer the lifetime.

400

500

600

well	lifetime
A	567.5 ps
В	500.7 ps
С	331.7 ps
D	308.5 ps

Spectral FLIM: a new dimension

Schistocera gregaria (nervous system)

A – Ex. @ 780 nm, Em. @ 500-550 nm B – Ex. @ 780 nm, Em. @ 574-647 nm C – Ex. @ 405 nm, Em. @ 500-550 nm D – Ex. @ 405 nm, Em. @ 435-485 nm

- Simultaneous data acquisition in two FLIM channels
- Any emission band
- High efficiency and transparency
- Can be combined with MP and D FLIM
- New Dimension:
 - Lifetime-Wavelength Recording

Lifetime as contrast: Distinguish 3 dyes by their life time in fixed cells (FluoCells, BPAE)

Intensity image Blue: DAPI (nucleus) Red: Mitotracker Red (mitochondria) Green: BODIPY FL phallacidin (actin)

Lifetime image Blue: DAPI (nucleus) Green: Mitotracker Red (mitochondria) Red: BODIPY FL phallacidin (actin)

Spectral FLIM on cyanobacteria

MICROSYSTEMS

Excitation @ 790 nm, 80 MHz

Intensity image 540 to 560 nm

580 to 600 nm

600 to 620 nm

620 to 640 nm

640 to 660 nm

660 to 680 nm

560 to 580 nm

620 to 640 nm

$$E_{fret} = 1 - \tau_{fret} / \tau_0$$

$$(r/r_0)^6 = \tau_{fret} / (\tau_0 - \tau_{fret})$$
 or $(r/r_0)^6 = \frac{1}{E_{fret}} - 1$

 $N_{fret} / N_0 = a / b$

Beads tagged with eCFP

Ex: 405nm Em: 465-505nm

Samples provided by Prof. Eicke Latz, UMASS Medical School, PhD, Application and Technology Support, Leica Microsystems

MICROSYSTEMS

Ex: 405nm Em : 465-505nm

Samples provided by Prof. Eicke Latz, UMASS Medical Schoolar, PhD, Application and Technology Support, Leica Microsystems

MICROSYSTEMS

eCFP-NIPPP1 - eYFP-pcDNA

Ex: 458nm

Em : 465-505nm

Em: 525-600nm

Constructs obtained from Prof. Swedlow/ Prof. Mycek (AQLM-2008)

eCFP-NIPPP1-mutant-eYFP-PP1

MICROSYSTEMS

Ex: 405nm Em : 465-505nm

Constructs obtained from Prof. Swedlow/ Prof. Mycek (AQLM-2008)

eCFP-NIPPP1 - eYFP-PP1

Ex: 458nm

Em : 465-505nm

Em: 525-600nm

Constructs obtained from Prof. Swedlow/ Prof. Mycek (AQLM-2008)

Constructs obtained from Prof. Swedlow/ Prof. Mycek (AQLM-2008)

Probe:	λ _{exc} /λ _{em}	τ _a (ns)	τ _b (ns)
BCECF	490/520	3.0 (acid)	3.8 (base)
Fluo-3	490/520	2.44 (no Ca ²⁺)	0.79 (Ca ²⁺)
Lucifer Yellow		3.3	
Sodium Green		1.1 (low Na⁺)	2.4 (high Na⁺)
Hoechst		2.2 (no acc., 7-AAD)	1.4 (acceptor,7-AAD)
FITC	490/520	4.0 (pH > 7)	3.0 (pH < 3)
TRITC	543/	2.0	
Rhodamine 700	659/669	1.6 (pH 9)	1.55 (pH 6)
Rhodamine 700		1.55 (H ₂ O)	2.99 (Ethanol)
Cy3	550/570	0.27	0.5 (antibody conjug.)
Cy5	633/	1.0	
GFP free (S65T)	488/507	2.68	
CFP		1.3	
YFP		3.7	

FLIM standards

Compound	Conditions	Emission Wavelength Range (nm)	τ (ns)
Phenol	5 mm acetate, pH 6	285-320	3.16
PPD	Ethanol	315-390	1.24
вво	Toluene	380-470	1.03
DCS	Toluene	430-510	0.12
DCS	MeOH	500-540	0.46
Erythrosin B	H ₂ O	535-580	0.08
Rhodamine B	H ₂ O	575-620	1.58
DCM	MeOH	590-680	1.22
Pyridine 2	MeOH	680-800	0.30
Rhodamine 800	H ₂ O	700-750	0.74

Tips and tricks:

How to do proper FLIM acquisition and analysis

Why is the maximum count rate limited and what is the maximum one could use?

If the count rate is in the same range as the laser pulse rate the probability is high, that two or more photons arrive within one cycle (between 2 laser pulses). However, only the first photon is registered. This leads to a distortion of the photon histogram and calculated live times are too short. This is called the "pile-up" effect.

Blue - laser pulse, Green - photon

Tips and tricks:

How to do proper FLIM acquisition and analysis

Why is the maximum count rate limited and what is the maximum one could use?

"pile-up" effect:

⇒ Reduce laser intensity until
 At least: photon count rate
 < 5% of laser repetition rate
 Better: photon count rate

< 1% of laser repetition rate

Laser repetition rate	Photon count rate < 5%	Photon count rate < 1%
80 MHz	< 4*10 ⁺⁶	< 8*10 ⁺⁵
40 MHz	< 2*10 ⁺⁶	< 4*10 ⁺⁵
20 MHz	< 1*10 ⁺⁶	< 2*10 ⁺⁵
10 MHz	< 5*10 ⁺⁵	< 1*10 ⁺⁵
5 MHz	< 2.5*10 ⁺⁵	< 5*10+4
2.5 MHz	< 1.25*10 ⁺⁵	< 2.5*10 ⁺⁴

Tips and tricks:

How to do proper FLIM acquisition and analysis

- 1) Do not use fixed samples
- 2) Select spectral detection range to detect donor only
- 3) Measure lifetime of donor without acceptor being present: τ_D
- 4) Measure lifetime of donor in the presence of acceptor: $\tau_{D=>A}$
 - Take 2 component fit
 - Fix τ_{D} to the value obtained in 2)
 - Get $\tau_{D=>A}$ from the fit
 - Get corresponding amplitudes a_D and a_{D=>A}
- 5) Calculate FRET efficiency according to following formula:

 $\mathsf{FRET}_{\mathsf{eff}} = (\tau_{\mathsf{D}} - \tau_{\mathsf{D} = > \mathsf{A}}) / \tau_{\mathsf{D}}$

5) Calculate the population undergoing FRET according to following formula: $FRET_{pop} = a_{D=>A} / (a_D + a_{D=>A})$

Formulas according to B. Vojnovic, Plymoth, Optical Workshop, April 2004

Tips and tricks: How to do proper FLIM acquisition and analysis

How many photons do I need for a proper analysis of lifetimes?

The number of photons depends on the expected number of components and how close are the corresponding lifetimes together. As a rule of thumb one could say:

components	Number of photons in the maximum	condition
1	> 100	
2	> 1.000	τ ₂ >2τ ₁
3	> 10.000	τ ₂ >2τ ₁ , τ ₃ >2τ ₂

If lifetimes are closer together they still can be separated. However in this case more photons have to be collected. The limits could be tested in a reference system (for instance mixture of dyes of known lifetimes)

Tips and tricks: How to do proper FLIM acquisition and analysis

What is "Incomplete decay" and when do I use it?

If the lifetime is too long for a given laser pulse rate the photon histogram does not decay within on laser cycle. The photons will appear within the next cycle and effect its shape.

lf:

A * exp(- T / τ) > SQRT(A)

(A – amplitude)

one should choose the option "incomplete decay" in B&H software.

Limitation:

Either: any stray light should be avoided carefully and "Offset" fixed to zero.

Or: the offset must be measured in control experiment and afterwards fixed to this value within the real experiment.

A better way to treat this problem is to reduce the pulse rate of the laser (easily possible in D FLIM)

Tips and tricks: How to do proper FLIM acquisition and analysis

This might be due to too high photon counting rate at the regions of high intensity. Reduce further laser intensity.

M I C R O S Y S T E M S

Intensity image 540 to 560 nm

580 to 600 nm

560 to 580 nm

620 to 640 nm

640 to 660 nm 660 to 680 nm

Questions ???????

 ω_3

Two-Photon Induced Upconverted Fluorescence in Dyes

 S_1 **Energy level** diagram showing two- ω_2 photon induced fluorescence or lasing $TP_{abs} \alpha I^2$ ω_1 Where **I** is the incident light intensity S_0

Pulsed Lasers

Power= Energy / time

For 10 mW average power of pulsed laser Output (1ps pulse width with 80 MHz rep rate)

$$10^{-3} \times \frac{1}{80 \times 10^{6} \times 10^{-12}} = 0.125 \times 10^{3} W$$

Two-photon Imaging

Technology of TCS SP2- MP

MICROSYSTEMS

Basic Principle

- FI= no. fluorescence photons/sec
- P = average laser power
- T = pulse length
- f = laser repetition rate

Technology of TCS SP2- MP

Advantages

Eye of zebrafish larvae (stained with DAPI)

Image size (xz): 125 μ m x 125 μ m - Objective: 63x 1.2 Water - Detection range: 400nm – 500nm

Ex: UV / 365 nm PMT: 360V

Ex: IR / 780 nm PMT: 360V Haridas Pudavar, PhD, Application and Technology Support, Leica Microsystems Inc. 10/25/09

Two-photon Excitation wavelengths for				
some common dyes				
	Yellow/Orange			
Excitation	Dye	Excitation		
350 780-800 nm 780-1000 nm 780-1000 nm 800-900 nm	YFP DiA	890-950 nm 800-860 nm		
	Red Dyes			
	Dye	Excitation		
Excitation 800-860 nm 488 800-830 nm 920-990 nm 900-950 nm 750-800 nm 780-830 nm	Dil Rhodamine B Alexa 568	830-920 nm 800-860 nm 780-840 nm		
	Some common d Some common d Excitation 350 780-800 nm 780-1000 nm 780-1000 nm 800-900 nm 800-860 nm 488 800-830 nm 920-990 nm 900-950 nm 750-800 nm 780-830 nm	Some common dyes Excitation Yellow/Orange 350 780-800 nm Dye 350 780-800 nm YFP 780-1000 nm DiA 800-900 nm Dye Excitation Dye Baber Solution Dil 800-860 nm Alexa 568 900-950 nm Find the second se		

http://research.stowers-institute.org/wiw/external/Technology/NLO/index.htm#TwoPhotonFluorescence

Two-photon Excitation wavelengths for some common dyes

Laser Options – TPE of fluorochromes

	Dye	1P	2P Ex		Dye	1P	2P Ex
		Ex/Em	(nm)		-	Ex/Em	(nm)
		(nm)				(nm)	
Cell Wall Stain	Calcofluor White	440/500-520	780>820	Gene Expression	BFP	395/509	780>820
					CFP	434/477	780>840
Nucleic Acid	DAPI, Hoechst	350/470	780>820		GFP	488/507	860<960
Stains		350/460			YFP	514/527	860<960
	Feulgen	480/560	780>820	-	Yellow Chameleon	434/477-527	780>840
Cell Viability	Fluorescein Di Acetate	495/520	780>820		DsRed	543/580	900<1064
				Mito	Rhodamin 123	507/529	780-860
Calcium	Calcium	488/530,	780	Tracers		000,020	
	Green/Texas Red	596/620					
	(770)			Neuronal	DID (760-780)		780
	Calcium Green	488/530	780>820	Tracer			
	Yellow Cameleon	464/527	780>820				
				Neurotrans	FM 1-43	510/626	830
Protein Conjugates	AMCA	431/498	780	mitter Release			
	FITC	490/525	780>820				
	CY2 (760 nm)	489/506	780>800				
	CY3 (760 nm)	550/570	780				
	CY5 (760 nm)	649/670	780<820]			
	TRITC	541/572	800-840]			
	Texas Red	596/620	780]			